This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Metal-Heterocyclic thione interactions-15-reactivity of coordinated thiones of bis(pyridine- 2-thiolato- or 1-oxopyridine- 2thiones)palladium(II)/platinum(II) towards divalent metal halides: synthesis of polynuclear complexes

Tarlok S. Lobana ${ }^{\text {a }}$; Renu Verma ${ }^{\text {a }}$; Alfonso Castineiras ${ }^{\text {b }}$

${ }^{a}$ Department of Chemistry, Guru Nanak Dev University, Amritsar-143 005, India ${ }^{\text {b }}$ Departamento de Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782 - Santiago, Spain

Online publication date: 12 May 2010

To cite this Article Lobana, Tarlok S., Verma, Renu and Castineiras, Alfonso(2003) 'Metal-Heterocyclic thione interactions-15 - reactivity of coordinated thiones of bis(pyridine- 2-thiolato- or 1-oxopyridine- 2thiones)palladium(II)/platinum(II) towards divalent metal halides: synthesis of polynuclear complexes', Journal of Coordination Chemistry, 56: 17, 1489 - 1498
To link to this Article: DOI: 10.1080/00958970310001628948
URL: http://dx.doi.org/10.1080/00958970310001628948

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


METAL-HETEROCYCLIC THIONE INTERACTIONS-15 - REACTIVITY OF COORDINATED THIONES OF BIS(PYRIDINE-2-THIOLATO- OR 1-OXOPYRIDINE-2-THIONES)PALLADIUM(II)/PLATINUM(II) TOWARDS DIVALENT METAL HALIDES: SYNTHESIS OF POLYNUCLEAR COMPLEXES

TARLOK S. LOBANA ${ }^{\text {a,* }, ~ R E N U ~ V E R M A ~}{ }^{\mathrm{a}}$ and ALFONSO CASTINEIRAS ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Guru Nanak Dev University, Amritsar-143 005, India;
${ }^{\mathrm{b}}$ Departamento de Quimica Inorganica, Facultad de Farmacia, Universidad de Santiago, 15782 - Santiago, Spain

(Received 13 January 2003; Revised 6 June 2003; In final form 17 September 2003)

Abstract

Reactions of dinuclear tetrakis(pyridine-2-thiolato)dipalladium(II) or platinum(II), $\mathrm{M}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$, with divalent metal halides in organic solvents formed compounds of stoichiometry: $\left[\mathrm{M}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}_{4} \cdot{ }_{4} \cdot\left(\mathrm{M}^{\prime} \mathrm{X}_{2}\right)_{2}\right]\{\mathrm{M}=\mathrm{Pd}\right.$, $\mathrm{M}^{\prime} \mathrm{X}_{2}=\mathrm{HgCl}_{2}$ (1), PtCl_{2} (2), CdCl_{2} (3); $\mathrm{M}=\mathrm{Pt}, \mathrm{M}^{\prime} \mathrm{X}_{2}=\mathrm{HgCl}_{2}$ (4) \}. Similarly, bis(1-oxopyridine-2-thione)palladium(II)/platinum(II) formed compounds: $\left[\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{M}^{\prime} \mathrm{X}_{2}\right]\left\{\mathrm{M}=\mathrm{Pd}, \mathrm{M}^{\prime} \mathrm{X}_{2}=\mathrm{HgCl}_{2}\right.$ (5), HgBr_{2} (6), HgI_{2} (7), CdCl_{2} (8), PtCl_{2} (9); $\mathrm{M}=\mathrm{Pt}, \mathrm{M}^{\prime} \mathrm{X}_{2}=\mathrm{HgBr}_{2}(\mathbf{1 0}), \mathrm{HgI}_{2}$, (11) $\}$. Compounds 1-11 have been characterized using elemental analysis, IR, far-IR, and NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$) spectroscopy. Coordination to metal centers of $\mathrm{M}^{\prime} \mathrm{X}_{2}$ occurs via coordinated sulfur. Possible structures are suggested. The crystallization of (5) in dimethyl sulfoxide formed crystals of $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ as revealed by X-ray crystallography.

Keywords: Pyridine-2-thiolato; 1-Oxopyridine-2-thione; Polynuclear complexes; Palladium(II); Platinum(II); X-ray structure

INTRODUCTION

The coordination chemistry of heterocyclic thiones containing chemically active, $-\mathrm{N}(\mathrm{H})-\mathrm{C}(=\mathrm{S})-\leftrightarrow-\mathrm{N}=\mathrm{C}(-\mathrm{SH})-$ groups has been investigated intensively, particularly in the past two decades [1]. Interaction with metals takes place with neutral and deprotonated species via a variety of modes forming monomers, dimers and oligomers [1-3]. The simplest prototype of heterocyclic-2-thiones, i.e. pyridine-2-thione [hereafter $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}$, I] and its N -oxide analogue (hereafter $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOS}$, II) have received more attention vis-à-vis other compounds of this class [1-6].

[^0]Generally monomeric compounds are formed by $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}$ (I) and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NOS}$ (II) as well as by other heterocyclic thiones and the number of dinuclear and oligomers is limited [1]. In continuation of our interest in the interaction of metals with heterocyclic thiones, we recently reported monomeric complexes with palladium(II)/platinum(II) containing S-bonded anionic $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}^{-}$and tertiary phosphines as co-ligands [2,6]. In the absence of tertiary phosphines, $\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{2}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ exist as N, S-bridged $\mathrm{M}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$ dimers (structure III); in contrast, $\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}(\mathrm{M}=\mathrm{Pd}$, Pt) are O, S-bonded monomers (structure IV) [5]. In this article, reactions of $\mathrm{M}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$ and $\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ with metal halides are reported in order to explore the reactivity of coordinated heterocyclic thiones.

EXPERIMENTAL

Materials and Techniques Used

$\mathrm{M}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$ and $\mathrm{M}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}(\mathrm{M}=\mathrm{Pd}$, Pt$)$ were prepared as described earlier [2,5]. The metal halides were procured from standard firms and used as such. The C, H and N elemental analyses were obtained with a Carlo-Erba 1108 microanalyser. Melting points were determined with a Gallenkamp electrically heated apparatus. Infrared spectra were recorded for KBr pellets ($4000-400 \mathrm{~cm}^{-1}$) or nujol mulls in polyethene sheets ($500-100 \mathrm{~cm}^{-1}$) on a Bruker IFS 66 V spectrometer. NMR spectra were recorded in CDCl_{3} using (i) Bruker AMX 300 spectrometer at 300.14 and $75.48 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$, respectively) with TMS as the internal reference. Tables I-III list IR and NMR data for the complexes.

Preparation of complexes

Compound 1 To a reddish-brown solution of $\mathrm{Pd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}(0.100 \mathrm{~g}, 0.150 \mathrm{mmol})$ in chloroform $\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{HgCl}_{2}(0.083 \mathrm{~g}, 0.300 \mathrm{mmol})$ in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ dropwise, with magnetic stirring, which was continued for 4 h . There was no precipitation; the contents were filtered and allowed to evaporate at room temperature.

TABLE I Main IR (cm^{-1}) peaks of compounds

Compound	Formula	$\nu(C=S)$		
		Peak I	Peak II	Peak III
1	$\mathrm{Pd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4} \cdot\left(\mathrm{HgCl}_{2}\right)_{2}$	1155s	1129m	
2	$\mathrm{Pd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4} \cdot\left(\mathrm{PtCl}_{2}\right)_{2}$	1156s	1130 m	
3	$\mathrm{Pd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4} \cdot\left(\mathrm{CdCl}_{2}\right)_{2}$	1156 m	1130 m	
4	$\mathrm{Pt}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4} \cdot\left(\mathrm{HgCl}_{2}\right)_{2}$	1149s	1130 m	
5	$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{HgCl}_{2}$	1177s	1160sh	1137s
6	$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{HgBr}_{2}$	1177s	1160sh	1136 m
7	$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{HgI}_{2}$	1178s	1160sh	1136 m
8	$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{CdCl}_{2}$	1180s	1161 m	1140s
9	$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{PtCl}_{2}$	1176s	1160sh	1138s
10	$\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{HgBr}_{2}$	1172 m	1160sh	1139s
11	$\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{HgI}_{2}$	1172 m	1162sh	1140s

The solid obtained was dried in vacuo. Yield, 75%; m.p. $\left({ }^{\circ} \mathrm{C}\right) 148-50$ (dec.), analytical data (\%), found, C, 19.1, H, 1.27, N, 4.24; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PdHg}, \mathrm{C}, 20.1, \mathrm{H}$, 1.34, N, 4.68. IR data (cm^{-1}), 1651s, $1540 \mathrm{~s}, 1468 \mathrm{~s}, 1430 \mathrm{~s}, 1155 \mathrm{~s}, 1129 \mathrm{~m}(\nu \mathrm{C}=\mathrm{S}), 1090 \mathrm{~s}$, $1054 \mathrm{~m}, 771 \mathrm{~s}, 727 \mathrm{~m}, 617 \mathrm{~s}, 566 \mathrm{~s}, 339 \mathrm{~b}(\nu \mathrm{Pd}-\mathrm{S})$, 227sb ($\nu \mathrm{Hg}-\mathrm{Cl}$). Compounds 2 and 5 were prepared similarly.

Compound 2 Yield, 70\%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>200$; analytical data (\%), found, C, 23.6, H, 1.84, N, 6.43; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PdPt}, \mathrm{C}, 22.7, \mathrm{H}, 1.74, \mathrm{~N}, 6.63$. IR data $\left(\mathrm{cm}^{-1}\right), 1650 \mathrm{~m}, 1584 \mathrm{~s}, 1450 \mathrm{~s}, 1417 \mathrm{~s}, 1156 \mathrm{~s}, 1130 \mathrm{~m}(\nu \mathrm{C}=\mathrm{S}), 1089 \mathrm{~m}, 1056 \mathrm{~s}, 763 \mathrm{~s}$, 722 m , 426s 393sb ($\nu \mathrm{Pd}-\mathrm{S}$), 384s, 350s, 208b ($\mathrm{vPt-Cl}$).

Compound 3 To a reddish-brown solution of $\mathrm{Pd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}(0.100 \mathrm{~g}, 0.150 \mathrm{mmol})$ in chloroform $\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{CdCl}_{2}(0.056 \mathrm{~g}, 0.300 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$ dropwise, with magnetic stirring, which was continued for 4 h . The solid obtained was filtered, washed with chloroform and dried in vacuo. Yield, 75%; m.p. $\left({ }^{\circ} \mathrm{C}\right) ~>250$; analytical data (\%), found, C, 20.7, H, 1.78, N, 5.91; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PdCd}, \mathrm{C}, 21.6, \mathrm{H}, 1.44, \mathrm{~N}, 5.05$. IR data $\left(\mathrm{cm}^{-1}\right), 1583 \mathrm{~s}, 1556 \mathrm{~m}, 1451 \mathrm{~s}$, $1417 \mathrm{~s}, 1150 \mathrm{~m}, 1130 \mathrm{~m}(\nu \mathrm{C}=\mathrm{S}), 1088 \mathrm{~s}, 1054 \mathrm{~m}, 762 \mathrm{~m}, 412 \mathrm{~m}(\nu \mathrm{Pd}-\mathrm{S}), 232 \mathrm{~s}(\nu \mathrm{Cd}-\mathrm{Cl})$. Compounds 6-9 were prepared similarly.

Compound 4 To a yellow suspension of $\mathrm{Pt}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}(0.100 \mathrm{~g}, 0.120 \mathrm{mmol})$ in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{HgCl}_{2}(0.065 \mathrm{~g}, 0.240 \mathrm{mmol})$ in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$. The contents turn red; the solid was filtered, washed with acetonitrile and dried in vacuo. Yield, 75%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>250$; analytical data (\%), found, C, 17.9, H, 1.14, N, 4.15; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PtHg}, \mathrm{C}, 17.5, \mathrm{H}, 1.16, \mathrm{~N}, 4.08$. IR data $\left(\mathrm{cm}^{-1}\right), 1592 \mathrm{~s}, 1548 \mathrm{~m}, 1462 \mathrm{~s}, 1408 \mathrm{~s}, 1149 \mathrm{~s}(\mathrm{\nu C}=\mathrm{S}), 1096 \mathrm{~s}, 1055 \mathrm{~s}, 763 \mathrm{~s}, 425 \mathrm{w}, 393 \mathrm{sb}$ ($\nu \mathrm{Pt}-\mathrm{S}$), 295s ($\nu \mathrm{Hg}-\mathrm{Cl}$).

Compound 5 Yield, 80%; m.p. $\left({ }^{\circ} \mathrm{C}\right)$ 224-26; analytical data (\%), found, C, 20.0, H, 1.06, N, 4.35; calcd. for $\mathrm{C}_{10} \mathrm{H}_{0} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PdHg}, \mathrm{C}, 19.1, \mathrm{H}, 1.27$, $\mathrm{N}, 4.44$. IR data $\left(\mathrm{cm}^{-1}\right), 1598 \mathrm{~s}, 1551 \mathrm{~m}, 1461 \mathrm{~s}, 1177 \mathrm{~s}, 1160 \mathrm{sh}, 1137 \mathrm{~s}(\nu \mathrm{C}=\mathrm{S}), 1087 \mathrm{~m}(\nu \mathrm{~N}-\mathrm{O}), 1042 \mathrm{~m}$, $827 \mathrm{~s}(\delta \mathrm{~N}-\mathrm{O}), 754 \mathrm{~s}, 706 \mathrm{~m}, 623 \mathrm{~m}, 449 \mathrm{~s}, 412 \mathrm{~s}, 385 \mathrm{~s}(\nu \mathrm{Pd}-\mathrm{S}), 312 \mathrm{~s}(\nu \mathrm{Hg}-\mathrm{Cl})$, $296 \mathrm{~s}(\nu \mathrm{Pd}-\mathrm{O})$.

Compound 6 Yield, 80%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>230$; analytical data (\%), found, C, $17.0, \mathrm{H}$, 1.00 , N, 3.84; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{PdHg}, \mathrm{C}, 16.7$, $\mathrm{H}, 1.11, \mathrm{~N}, 3.89$. IR data $\left(\mathrm{cm}^{-1}\right), 1597 \mathrm{~m}, 1550 \mathrm{~m}, 1461 \mathrm{~s}, 1414 \mathrm{~s}, 1177 \mathrm{~s}, 1160 \mathrm{~m}, 1136 \mathrm{~m}(\nu \mathrm{C}=\mathrm{S}), 1087 \mathrm{~m}(\nu \mathrm{~N}-\mathrm{O})$,

TABLE II $\quad{ }^{1} \mathrm{H}$ NMR data ($\delta, \mathrm{ppm}, H, \mathrm{~Hz}$) of compounds

Compound	H(6)	$H(4)$	H(3)	H(5)
4	9.0 dd $\begin{aligned} & \left(J_{5}=6.1,\right. \\ & \left.J_{4}=1.0\right) \end{aligned}$	$\begin{aligned} & 7.6 \mathrm{td} \\ & \left(J_{3,5}=5.7,\right. \\ & \left.J_{6}=1.2\right) \end{aligned}$	$\begin{aligned} & 7.3 \mathrm{dd} \\ & \left(J_{4}=8.3,\right. \\ & \left.J_{5}=0.9\right) \end{aligned}$	$\begin{aligned} & 7.2 \mathrm{td} \\ & \left(J_{4,6}=6.0,\right. \\ & \left.J_{3}=1.4\right) \end{aligned}$
6	$\begin{aligned} & 8.1 \mathrm{~d} \\ & \left(J_{5}=6.8\right) \end{aligned}$	$\begin{aligned} & 7.2 \mathrm{td} \\ & \left(J_{3,5}=7.6\right) \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{~d} \\ & \left(J_{4}=6.8\right) \end{aligned}$	$\begin{aligned} & 6.9 \mathrm{t} \\ & \left(J_{4,6}=7.0\right) \end{aligned}$
7	$\begin{aligned} & 8.1 \mathrm{dd} \\ & \left(J_{5}=6.1,\right. \\ & \left.J_{4}=0.8\right) \end{aligned}$	$\begin{aligned} & 7.2 \operatorname{td} \\ & \left(J_{3,5}=7.6,\right. \\ & \left.J_{6}=1.4\right) \end{aligned}$	$\begin{aligned} & 7.5 \mathrm{dd} \\ & \left(J_{4}=8.7,\right. \\ & \left.J_{5}=1.8\right) \end{aligned}$	$\begin{aligned} & 7.00 \mathrm{td} \\ & \left(J_{4,6}=6.4,\right. \\ & \left.J_{3}=1.7\right) \end{aligned}$
8	$\begin{aligned} & 8.4 \mathrm{~d} \\ & \left(J_{5}=6.4\right) \end{aligned}$	$\begin{aligned} & 7.4 \mathrm{td} \\ & \left(J_{3,5}=7.7,\right. \\ & \left.J_{6}=1.2\right) \end{aligned}$	$\begin{aligned} & 7.6 \mathrm{dd} \\ & \left(J_{4}=8.4,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	$\begin{aligned} & 7.2 \mathrm{td} \\ & \left(J_{4,6}=6.9,\right. \\ & \left.J_{3}=1.7\right) \end{aligned}$
9 cis	$\begin{aligned} & 8.0 \mathrm{t} \\ & \left(J_{5}=6.4\right) \end{aligned}$	7.0 m	$\begin{aligned} & 7.8 \mathrm{dd} \\ & \left(J_{4}=9.4,\right. \\ & \left.J_{5}=1.3\right) \end{aligned}$	7.3 m
9 trans	$\begin{aligned} & 8.4 \mathrm{~d} \\ & \left(J_{5}=6.7\right) \end{aligned}$	7.0m	7.7 dd $\begin{aligned} & \left(J_{4}=8.5,\right. \\ & \left.J_{5}=1.3\right) \end{aligned}$	7.3m
10 cis	$\begin{aligned} & 8.05 \mathrm{~d} \\ & \left(J_{5}=6.0\right) \end{aligned}$	7.2 m	7.7 dd $\begin{aligned} & \left(J_{4}=8.5,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	6.8 m
10 trans	$\begin{aligned} & 8.2 \mathrm{~d} \\ & \left(J_{5}=6.3\right) \end{aligned}$	7.5 m	$\begin{aligned} & 7.5 \mathrm{dd} \\ & \left(J_{4}=8.3,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	6.9 m
11 cis	$\begin{aligned} & 8.2 \mathrm{~d} \\ & \left(J_{5}=6.1\right) \end{aligned}$	7.3m	7.7 dd $\begin{aligned} & \left(J_{4}=8.5,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	6.9 m
11 trans	$\begin{aligned} & 8.3 \mathrm{~d} \\ & \left(J_{5}=6.5\right) \end{aligned}$	7.4 m	$\begin{aligned} & 7.6 \mathrm{dd} \\ & \left(J_{4}=8.5,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	6.9 m
$\mathrm{Pd}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}{ }^{\text {a }}$	$\begin{aligned} & 8.48 \mathrm{~d} \\ & \left(J_{5}=4.8\right) \end{aligned}$	7.6 m	7.6 m	7.11 m
$\mathrm{Pt}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}{ }^{\text {a }}$	$\begin{aligned} & 9.1 \mathrm{~d} \\ & \left(J_{5}=6.0\right) \end{aligned}$	$\begin{aligned} & 7.36 \mathrm{t} \\ & \left(J_{3,5}=7.6\right) \end{aligned}$	$\begin{aligned} & 7.2 \mathrm{~d} \\ & \left(J_{4}=8.1\right) \end{aligned}$	$\begin{aligned} & 6.9 \mathrm{t} \\ & \left(J_{4,6}=6.6\right) \end{aligned}$
$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}{ }^{\text {a }}$	$\begin{aligned} & 8.03 \mathrm{~d} \\ & \left(J_{5}=6.7\right) \end{aligned}$	$\begin{aligned} & 7.14 \mathrm{td} \\ & \left(J_{3,5}=7.2,\right. \\ & \left.J_{6}=1.1\right) \end{aligned}$	$\begin{aligned} & 7.39 \mathrm{dd} \\ & \left(J_{4}=8.4,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	$\begin{aligned} & 6.83 \mathrm{td} \\ & \left(J_{4,6}=6.9,\right. \\ & \left.J_{3}=1.6\right) \end{aligned}$
$\operatorname{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}{ }^{\text {a }}$				
cis	$\begin{aligned} & 7.9 \mathrm{~d} \\ & \left(J_{5}=7.0\right) \end{aligned}$	$-$	$\begin{gathered} 7.5 \mathrm{dd} \\ \left(J_{4}=8.4,\right. \\ \left.J_{5}=1.4\right) \end{gathered}$	$\begin{aligned} & 6.7 \mathrm{t} \\ & \left(J_{4,6}=7.0,\right. \\ & \left.J_{3}=1.6\right) \end{aligned}$
trans	$\begin{aligned} & 8.15 \mathrm{~d} \\ & \left(J_{5}=6.6\right) \end{aligned}$	$\begin{aligned} & 7.14 \mathrm{td} \\ & \left(J_{3,5}=7.8,\right. \\ & \left.J_{6}=1.3\right) \end{aligned}$	$\begin{aligned} & 7.46 \mathrm{dd} \\ & \left(J_{4}=8.4,\right. \\ & \left.J_{5}=1.4\right) \end{aligned}$	$\begin{aligned} & 6.76 \mathrm{td} \\ & \left(J_{4,6}=6.9,\right. \\ & \left.J_{3}=1.6\right) \end{aligned}$

${ }^{\mathrm{a}}$ From reference [5].

TABLE III ${ }^{13} \mathrm{C}$ NMR data of ($\delta, \mathrm{ppm}, H, \mathrm{~Hz}$) of compounds

Compound	$C(2)$	$C(6)$	$C(4)$	$C(5)$	$C(3)$
$\mathbf{4}$	176.8	149.7	137.4	128.1	121.1
$\mathbf{7}$	156.7	138.2	131.2	128.1	119.8
$\mathbf{8}$	156.6	138.2	131.2	128.1	119.7
$\mathbf{9}$	155.3	138.4	132.3	127.2	120.5
	154.5	138.6	132.9	126.9	120.6
$\mathrm{Pd}_{\mathrm{C}}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}{ }^{\text {a }}$	157.9	136.1	128.3	127.3	116.9

${ }^{\mathrm{a}}$ From reference [5].
$1042 \mathrm{~m}, ~ 827 \mathrm{~s}(\delta \mathrm{~N}-\mathrm{O}), 756 \mathrm{~s}, 706 \mathrm{~m}, 450 \mathrm{~s}, 412 \mathrm{~s}, 383 \mathrm{~s}(\nu \mathrm{Pd}-\mathrm{S}), 286 \mathrm{~s}(\nu \mathrm{Pd}-\mathrm{O}), 182 \mathrm{~s}$ ($\nu \mathrm{Hg}-\mathrm{Br}$).

Compound 7 Yield, 75%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>250$; analytical data (\%), found, C, 15.1, H, $0.76, \mathrm{~N}, 3.44$; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{I}_{2} \mathrm{PdHg}, \mathrm{C}, 14.8, \mathrm{H}, 0.98, \mathrm{~N}, 3.44$. IR data $\left(\mathrm{cm}^{-1}\right), 1597 \mathrm{~m}, 1550 \mathrm{~s}, 1460 \mathrm{~s}, 1413 \mathrm{~m}, 1178 \mathrm{~s}, 1160 \mathrm{w}, 1136 \mathrm{~m}(\nu \mathrm{C}=\mathrm{S}), 1086 \mathrm{~m}$ ($\nu \mathrm{N}-\mathrm{O}$), $1041 \mathrm{~m}, ~ 826 \mathrm{~s}(\delta \mathrm{~N}-\mathrm{O}), 753 \mathrm{~s}, 706 \mathrm{~m}, 448 \mathrm{~s}, 409 \mathrm{~s}, 384 \mathrm{~s}(\nu \mathrm{Pd}-\mathrm{S}), 312 \mathrm{~m}, 283 \mathrm{~s}(\nu \mathrm{Pd}-\mathrm{O})$, 181s ($\nu \mathrm{Hg}-\mathrm{I}$).

Compound 8 Yield, 78\%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>250$; analytical data (\%), found, C, 20.8, H, 1.46, N, 5.00; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PdCd}, \mathrm{C}, 20.5, \mathrm{H}, 1.36, \mathrm{~N}, 4.77$. IR data $\left(\mathrm{cm}^{-1}\right), 1599 \mathrm{~m}, 1549 \mathrm{~s}, 1460 \mathrm{~s}, 1415 \mathrm{~m}, 1180 \mathrm{~s}, 1161 \mathrm{~s}, 1140 \mathrm{~m}(\nu \mathrm{C}=\mathrm{S}), 1088 \mathrm{~m}(\nu \mathrm{~N}-\mathrm{O})$, $1040 \mathrm{w}, 822 \mathrm{~m}(\delta \mathrm{~N}-\mathrm{O}), 747 \mathrm{~s}, 441 \mathrm{~s}$, 391s ($\nu \mathrm{Pd}-\mathrm{S}$), 293m ($\nu \mathrm{Pd}-\mathrm{O}$), 227s ($\nu \mathrm{Cd}-\mathrm{Cl}$).

Compound 9 Yield, 75%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>250$; analytical data (\%), found, C, 19.5, H, $1.55, \mathrm{~N}, 4.78$; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{2} \mathrm{PdPt}, \mathrm{C}, 19.2, \mathrm{H}, 1.28, \mathrm{~N}, 4.48$. IR data $\left(\mathrm{cm}^{-1}\right), 1660 \mathrm{~s}, 1555 \mathrm{~s}, 1464 \mathrm{~s}, 1422 \mathrm{~m}, 1176 \mathrm{~s}, 1138 \mathrm{~s}(\nu \mathrm{C}=\mathrm{S}), 1087 \mathrm{w}(\nu \mathrm{N}-\mathrm{O}), 1047 \mathrm{~s}, 825 \mathrm{~s}$ ($\delta \mathrm{N}-\mathrm{O}$), $764 \mathrm{~s}, 462 \mathrm{~s}$, 395sb ($\nu \mathrm{Pd}-\mathrm{S}$), 318sb, 287sb ($\nu \mathrm{Pd}-\mathrm{O}$).

Compound 10 To a solution of $\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}(0.100 \mathrm{~g}, 0.240 \mathrm{mmol})$ in acetonitrile $\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{HgBr}_{2}(0.080 \mathrm{~g}, 0.240 \mathrm{mmol})$ in ethanol $\left(20 \mathrm{~cm}^{3}\right)$. The contents were stirred for 4 h and the solid obtained was filtered, washed with acetonitrile-ethanol mixture and dried in vacuo. Yield, 72%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>245 \mathrm{~d}$; analytical data (\%), found, C, 14.5, H, 1.38, N, 3.34; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Br} 2 \mathrm{PtHg}, \mathrm{C}$, $14.9, \mathrm{H}, 1.00, \mathrm{~N}, 3.46$. IR data $\left(\mathrm{cm}^{-1}\right), 1601 \mathrm{~m}, 1552 \mathrm{~m}, 1461 \mathrm{~s}, 1416 \mathrm{~m}, 1172 \mathrm{~m}, 1167 \mathrm{sh}$, $1139 \mathrm{~s}(\nu \mathrm{C}=\mathrm{S}), 1090 \mathrm{~m}(\nu \mathrm{~N}-\mathrm{O}), 1041 \mathrm{w}, 823 \mathrm{~m}(\delta \mathrm{~N}-\mathrm{O}), 757 \mathrm{~s}, 385 \mathrm{w}, 344 \mathrm{~s}(\nu \mathrm{Pt}-\mathrm{S}), 302 \mathrm{~m}$ $(\nu \mathrm{Pt}-\mathrm{O}), 253 \mathrm{~s}, 198 \mathrm{~m}(\nu \mathrm{Hg}-\mathrm{Br})$. The Compound 11 was prepared similarly.

Compound 11 Yield, 80%; m.p. $\left({ }^{\circ} \mathrm{C}\right)>230 \mathrm{~d}$; analytical data (\%), found, C, 12.7, H, $0.86, \mathrm{~N}, 2.84$; calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{I}_{2} \mathrm{PtHg}, \mathrm{C}, 13.3, \mathrm{H}, 0.89, \mathrm{~N}, 3.10$. IR data (cm^{-1}), $1600 \mathrm{~m}, 1551 \mathrm{~s}, 1460 \mathrm{~s}, 1416 \mathrm{~m}, 1172 \mathrm{~m}, 1140 \mathrm{~s}(\nu \mathrm{C}=\mathrm{S})$, 1089 m ($\nu \mathrm{N}-\mathrm{O}$), $1040 \mathrm{w}, 821 \mathrm{~m}$ ($8 \mathrm{~N}-\mathrm{O}$), 752 s , 386w, 342s ($\nu \mathrm{Pt}-\mathrm{S}$), 304w ($\nu \mathrm{Pt}-\mathrm{O}$), 153 m ($\nu \mathrm{Hg}-\mathrm{I}$).

Crystal Structure Determination Crystal growth of $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{HgCl}_{2}$ (5) from dimethyl sulfoxide formed crystals of $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$. A red prismatic crystal was mounted on a glass fibre and used for data collection. Cell constants and an orientation matrix for data collection were obtained by least squares refinement of the diffraction data from 25 reflections in the range of $10.565<\theta<18.115$ degree on an Enraf Nonius CAD4 automatic diffractometer [7]. Data were collected at 293 K using $\operatorname{Mo} \mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ and the ω scan technique and corrected for Lorentz and polarisation effects [8].

A semi-empirical absorption correction (ψ-scan) was made [9].
The structures were solved by Patterson and Fourier methods [10] which revealed the position of all non-hydrogen atoms and refined on F^{2} by a full-matrix least squares procedure using anisotropic displacement parameters [11]. All hydrogen atoms were located from difference Fourier maps in their calculated positions ($\mathrm{C}-\mathrm{H}, 0.93-0.97 \AA$) and were refined isotropically. Atomic scattering factors used from International Tables for X-ray crystallography [12] and molecular graphics from PLATON 98 [10]. A summary of the crystal data, experimental details and refinement results are listed in Table IV. Atomic positions for the nonhydrogen atoms are listed in Table VI.

TABLE IV Crystal data and structure refinement for $\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ compound

Parameter	$\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Pd}$
Molecular weight	358.70
Crystal system	Monoclinic
Space group	$P 2(1) / n$
Unit cell dimensions	
$a(\AA)$	$8.698(2)$
$b(\AA)$	$13.970(2)$
$c(\AA)$	$9.957(2)$
$\beta\left({ }^{\circ}\right)$	$96.68(2)$
Volume $\left.(\AA)^{3}\right)^{3}$	$1201.7(4)$
Z	4
Density (calculated $)\left(\mathrm{Mg} \mathrm{m}^{-1}\right)$	1.983
Absorption coefficient $(\mu)\left(\mathrm{mm}^{-1}\right)$	1.880
$F(000)$	704
Crystal size, mm	$0.25 \times 0.15 \times 0.15$
2 $\left.\theta_{\text {max }}{ }^{\circ}{ }^{\circ}\right)$	52.60
Index ranges	$0 \leq h \leq 10 ; 0 \leq k \leq 17 ;$
	$-12 \leq l \leq 12$
Reflections collected	2604
Max. and min. transmission	0.966 and 0.931
Independent reflections $\left(R_{\text {int }}\right)$	$2444(0.0265)$
Reflections observed $[I>2 \sigma(I)]$	2444
Parameters	186
Goodness-of-fit on F^{2}	0.991
Final R indices $[I>2 \sigma(I)]$	$R 1=0.0318, w R 2=0.0687$
R indices (all data)	$R 1=0.0730, w R 2=0.0792$
Largest diff. peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	$0.482,-0.0536$

TABLE V Atomic coordinates and equivalent isotropic displacement parameters

Atom	x / a	y / b	z / c	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Pd}(1)$	$0.6021(1)$	$0.0645(1)$	$0.3511(1)$	$0.038(1)$
$\mathrm{S}(1)$	$0.3990(1)$	$0.1390(1)$	$0.2382(1)$	$0.048(1)$
$\mathrm{S}(2)$	$0.5211(1)$	$-0.0833(1)$	$0.2957(1)$	$0.051(1)$
$\mathrm{O}(1)$	$0.7905(3)$	$0.0005(2)$	$0.4532(3)$	$0.047(1)$
$\mathrm{O}(2)$	$0.6813(3)$	$0.1974(2)$	$0.4072(3)$	$0.048(1)$
$\mathrm{N}(11)$	$0.5900(4)$	$0.2704(3)$	$0.3591(4)$	$0.040(1)$
$\mathrm{N}(21)$	$0.7881(4)$	$-0.0961(2)$	$0.4557(3)$	$0.039(1)$
$\mathrm{C}(12)$	$0.4561(5)$	$0.2549(3)$	$0.2771(4)$	$0.041(1)$
$\mathrm{C}(13)$	$0.3698(5)$	$0.3352(4)$	$0.2303(5)$	$0.049(1)$
$\mathrm{C}(14)$	$0.4180(6)$	$0.4368(4)$	$0.2662(5)$	$0.056(1)$
$\mathrm{C}(15)$	$0.5535(6)$	$0.3597(3)$	$0.3526(5)$	$0.056(1)$
$\mathrm{C}(16)$	$0.6380(6)$	$-0.1452(3)$	$0.3968(5)$	$0.050(1)$
$\mathrm{C}(22)$	$0.6678(5)$	$-0.2444(3)$	$0.3893(4)$	$0.041(1)$
$\mathrm{C}(23)$	$0.6730(6)$	$-0.2909(4)$	$0.3993(5)$	$0.053(1)$
$\mathrm{C}(24)$	$0.7948(6)$	$-0.2374(3)$	$0.4707(5)$	$0.054(1)$
$\mathrm{C}(25)$	$0.9160(6)$	$-0.1396(3)$	$0.5331(5)$	$0.051(1)$
$\mathrm{C}(26)$	$0.9117(5)$		$0.5259(4)$	$0.046(1)$

RESULTS AND DISCUSSION

Synthesis and IR spectroscopy

Reactions of the dinuclear complexes $\mathrm{M}_{2}\left(\eta^{2}-\mu-\mathrm{N}, \mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ with divalent metal halides, $\mathrm{M}^{\prime} \mathrm{Cl}_{2}\left(\mathrm{M}^{\prime}=\mathrm{Pt}, \mathrm{Hg}, \mathrm{Cd}\right)$ in organic solvents formed products of

TABLE VI Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$

Bond lengths			
$\mathrm{Pd}(1)-\mathrm{O}(1)$	$2.033(3)$	$\mathrm{S}(1)-\mathrm{C}(12)$	$1.724(1)$
$\mathrm{Pd}(1)-\mathrm{O}(2)$	$\mathrm{S}(2)-\mathrm{C}(22)$	$1.723(1)$	
$\mathrm{Pd}(1)-\mathrm{S}(2)$	$2.036(3)$	$\mathrm{O}(1)-\mathrm{N}(21)$	$1.350(5)$
$\mathrm{Pd}(1)-\mathrm{S}(1)$	$2.230(1)$	$\mathrm{O}(2)-\mathrm{N}(11)$	$1.346(5)$
Bond angles	$2.237(1)$		
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{O}(2)$		$\mathrm{Pd}(1)-\mathrm{S}(2)-\mathrm{C}(22)$	$98.0(2)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{S}(2)$	$92.1(1)$	$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{N}(21)$	$115.8(2)$
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{S}(2)$	$86.0(1)$	$\mathrm{Pd}(1)-\mathrm{O}(2)-\mathrm{N}(11)$	$115.3(2)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$177.9(1)$	$\mathrm{S}(2)-\mathrm{N}(11)-\mathrm{C}(12)$	$121.4(4)$
$\mathrm{O}(2)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$178.2(1)$	$\mathrm{O}(12)-\mathrm{N}(11)$	$119.3(3)$
$\mathrm{S}(2)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$86.3(1)$	$\mathrm{S}(2)-\mathrm{C}(22)-\mathrm{C}(22)$	$120.6(4)$
$\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{C}(12)$	$95.7(1)$	$119.3(3)$	

composition, $\mathrm{M}_{2}\left(\eta^{2}-\mu-\mathrm{N}, \mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4} \cdot \mathrm{M}_{2}^{\prime} \mathrm{X}_{4}$ (1-4). Similarly, reactions of mononuclear complexes $\mathrm{M}\left(\eta^{2}-\mathrm{O}, \mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ with $\mathrm{M}^{\prime} \mathrm{X}_{2}$ formed products of composition, $\mathrm{M}\left(\eta^{2}-\mathrm{O}, \mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{M}^{\prime} \mathrm{X}_{2}(\mathbf{5}-\mathbf{1 1})$. All the complexes prepared have poor solubility in common organic solvents such as ethanol, chloroform, benzene etc., but were soluble in DMSO. Due to poor solubility, NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ could not be recorded for all the complexes. The complexes were not stable in solvents such as DMSO, DMF etc. and our attempt to crystallise compound 5 formed crystals of $\operatorname{Pd}\left(\eta^{2}-\mathrm{O}, \mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ which was one of the decomposition products.

The IR spectral bands are listed in the experimental section; however, Table I contains the diagnostic $\nu \mathrm{C}=\mathrm{S}$ peaks for ready comparison. The dinuclear $\mathrm{Pd}_{2}\left(\eta^{2}-\right.$ $\left.\mu-\mathrm{N}, \mathrm{S}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$ [5] showed one $\nu \mathrm{C}=\mathrm{S}$ peak at $1115 \mathrm{~cm}^{-1}$ and its adduct with HgCl_{2}, namely compound $\mathbf{1}$ showed two peaks at 1155 s and $1129 \mathrm{~m}\left(\mathrm{~cm}^{-1}\right)$; the behaviour of compounds 2-4 is similar. Since square planar $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ have poor tendency to extend coordination number, the $\mathrm{M}^{\prime} \mathrm{X}_{2}$ molecules can coordinate to dinuclear $\mathrm{M}_{2}\left(\eta^{2}-\mu-N, S-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$ via coordinated S atoms forming tetranuclear complexes (e.g. III $\cdot 2 \mathrm{M}^{\prime} \mathrm{X}_{2}$; coordinating via S atoms).

The compound $\mathrm{Pd}\left(\eta^{2}-O, S-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ [5] shows $\nu \mathrm{C}=\mathrm{S}$ peaks at 1177 s and 1161 s $\left(\mathrm{cm}^{-1}\right)$, which after reaction with HgCl_{2} (compound 5) showed clear change. Whereas the 1177 s peak is unaffected, the other peak at $1161 \mathrm{~s}\left(\mathrm{~cm}^{-1}\right)$ changes to a shoulder and a new peak appears at $1137 \mathrm{~s}\left(\mathrm{~cm}^{-1}\right)$. The same behaviour is shown by the compounds 6-9. The $\nu \mathrm{N}-\mathrm{O}$ and $\delta \mathrm{N}-\mathrm{O}$ do not show any significant changes (cf. Experimental section). Since $\operatorname{Pd}\left(\eta^{2}-O, S-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ [5] exists as a monomer [13], the simplest way of its binding with $\mathrm{M}^{\prime} \mathrm{X}_{2}$ molecules appears to be via coordinated S-atom. Finally $\operatorname{Pt}\left(\eta^{2}-O, S-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ shows $\nu \mathrm{C}=\mathrm{S}$ peak a $1168 \mathrm{~m}, 1152 \mathrm{sh}$ and in its adducts (compounds $\mathbf{1 0}$ and 11, Table I), three peaks occurred as for $\mathrm{Pd}(\mathrm{II})$ adducts, 5-9. The structure IV $\cdot \mathrm{M}^{\prime} \mathrm{X}_{2}$ (coordinating via S atoms) is suggested for compounds 5-11.

NMR Spectroscopy

Among the polynuclear compounds $\mathbf{1 - 4}$, only compound $\mathbf{4}$ showed sufficient solubility for recording its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Tables II and III). The pyridyl ring protons $\mathrm{H}(6), \mathrm{H}(4), \mathrm{H}(3)$ and $\mathrm{H}(5)$ of $\mathrm{Pt}_{2}\left(\eta^{2}-\mu-N, S-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}\right)_{4}$ showed a doublet, a triplet, a doublet and a triplet respectively and these protons in compound $\mathbf{4}$ appeared
as a doublet of doublets, a triplet of doublets, a doublet of doublets and a triplet of doublets respectively. Similarly, the ${ }^{13} \mathrm{C}$ NMR spectrum of this compound showed $C(2), C(6), C(4), C(5)$ and $C(3)$ peaks at $176.8,149.7,137.4,128.1$ and 121.1 ppm respectively. Thus ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data clearly support the view that $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}^{-}$ moiety remains N, S-bridged as in the parent compound and that a dinuclear moiety binds to metal halides via coordinated S donor atoms only $[1,5]$.
${ }^{1} \mathrm{H}$ NMR spectra of compounds $6-8$ showed characteristic $\mathrm{H}(6), \mathrm{H}(4), \mathrm{H}(3)$ and $\mathrm{H}(5)$ peaks at positions relatively low-field as compared to the starting material $\operatorname{Pd}\left(\eta^{2}-\mathrm{O}, \mathrm{S}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ [5]. This low field shift supports coordination of $\mathrm{M}^{\prime} \mathrm{X}_{2}$ molecules. ${ }^{13} \mathrm{C}$ NMR spectra of compounds 7 and $\mathbf{8}$ showed low-field shifts for all the pyridyl carbons except $\mathrm{C}(2)$ which showed a small high field shift. Since $\operatorname{Pt}\left(\eta^{2}-O, S\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ showed cis and trans isomers as revealed by NMR [5], its adducts, namely, compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ showed cis and trans isomers (Table II); the proton signals occurred at low field. In other words both cis and trans isomers are bonded to $\mathrm{M}^{\prime} \mathrm{X}_{2}$ molecules via S donor atoms. Interestingly, the adduct $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$. PtCl_{2} showed two sets of proton and carbon NMR signals on the pattern shown by $\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ as discussed above and it reveals that reaction of $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ with PtCl_{2} rather involves rearrangement of $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}^{-}$moieties forming $\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{PdCl}_{2}$ instead of the expected product $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2} \cdot \mathrm{PtCl}_{2} 9$. This could be explained in terms of the enhanced ligand field stabilisation energy of $\mathrm{Pt}(\mathrm{II})$ complexes vis-à-vis that of $\operatorname{Pd}(I I)$ complexes.

Crystal Structure of $\operatorname{Pd}\left(\eta^{2}-O, S-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$

Crystals of compound 5 from DMSO were studied using X-ray crystallography. Structural parameters of $\mathrm{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ are similar to those reported in literature [13]. The atom numbering scheme is shown in Fig. 1. Table IV contains a summary of the crystal data while the selected interatomic parameters are listed in Table V. Palladium is bonded to two oxygen and two sulfur atoms of two different $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}^{-}$moieties and the geometry around the metal center is square planar. As expected, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}^{-}$acts as a O, S-chelating ligand with the central $\mathrm{PdO}_{2} \mathrm{~S}_{2}$ core having a cis -disposition of O and S atoms.
The $\mathrm{Pd}-\mathrm{S}$ bond lengths $[2.230(1), 2.237(1) \AA$ A are somewhat shorter while $\mathrm{Pd}-\mathrm{O}$ bond distances $[2.033(3), 2.036(3) \AA]$ are longer than those reported in literature $[\mathrm{Pd}-\mathrm{S}$, $2.280-2.322 \AA ;$ Pd-O, $2.009 \AA$] [13]. The C-S distance [av. 1.724(1) \AA] is significantly shorter than the sum of the covalent radii of C and $\mathrm{S}[1.79 \AA$ A [14]. The $\mathrm{N}-\mathrm{O}$ distances $[1.346(5), 1.350(5) \AA]$ are shorter than that $(1.388 \AA)$ found in $\mathrm{Me}_{3} \mathrm{NO}$ where no π-bonding can occur [15]. These data indicate double bond character in the $\mathrm{N}-\mathrm{O}$ and $\mathrm{C}-\mathrm{S}$ bonds similar to that observed in $\mathrm{Ag}(\mathrm{I}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{V}(\mathrm{IV})$ compounds of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}^{-}$ligand [16].

The angles around Pd vary from 85 to 96°, the smallest being $\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(2)$ and this distorts the square planar geometry. The bite angle $\mathrm{O}-\mathrm{Pd}-\mathrm{S}\left(\mathrm{ca} .86^{\circ}\right)$ is somewhat larger than those found in $\operatorname{Ag}(\mathrm{I})\left(76^{\circ}\right)$ and $\mathrm{Zn}(\mathrm{II})\left(82-85^{\circ}\right)$ complexes [16]. The relatively large $\mathrm{O}-\mathrm{Pd}-\mathrm{S}$ bite angle leads to smaller $\mathrm{Pd}-\mathrm{S}-\mathrm{C}$ bond angles $\left\{97.71(15), 97.98(16)^{\circ}\right\}$ vis-àvis those in $\operatorname{Ag}(\mathrm{I})$ complexes $\left\{100.4(1), 103.1(1)^{\circ}\right\}$. The $\mathrm{Pd}-\mathrm{O}-\mathrm{N}$ bond angles $\{115.3(2)$, $\left.115.8(3)^{\circ}\right\}$ are relatively rigid and are close to that in $\mathrm{Ag}(\mathrm{I})$ complex [16]. This difference in behaviour of $\mathrm{M}-\mathrm{S}-\mathrm{C}$ and $\mathrm{M}-\mathrm{O}-\mathrm{N}$ angles is attributed to larger angular flexibility of the S atom over the O atom.

FIGURE 1 The structure of compound $\operatorname{Pd}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NOS}\right)_{2}$ showing atom numbering scheme.

The plane defined by $\mathrm{N}^{11} \mathrm{C}^{12-16} \mathrm{~S}^{1} \mathrm{O}^{1} \mathrm{Pd}^{1}$ makes an angle of 2.06° with the plane defined by $\mathrm{S}^{1} \mathrm{~S}^{2} \mathrm{O}^{1} \mathrm{O}^{2} \mathrm{Pd}^{1}$ which in turn makes an angle of 4.68° with the plane defined by $\mathrm{N}^{21} \mathrm{C}^{22-26} \mathrm{~S}^{2} \mathrm{O}^{2} \mathrm{Pd}^{1}$.

Acknowledgements

We are thankful to the UGC, New Delhi, for financial assistance. We are also thankful to Professor J. S. Casas of the University of Santiago, Spain, for instrumental facilities.

Supplementary Data

Crystallographic information has been deposited with the Cambridge Data Centre as supplementary publication no. CCDC 211472. Information can be obtained from CCDC Deposit (deposit@ccdc.cam.ac.uk).

References

[1] (a) E.S. Raper, Coord. Chem. Rev. 61, 115 (1985); (b) E.S. Raper, Coord. Chem. Rev. 153, 199 (1996); (c) E.S. Raper, Coord. Chem. Rev. 129, 91(1994); (d) E.S. Raper, Coord. Chem. Rev. 165, 475 (1997).
[2] T.S. Lobana, Renu Verma, Geeta Hundal and A. Castineiras, Polyhedron 19, 899 (2000) and references cited therein.
[3] (a) T.S. Lobana, Seema Paul and A. Castineiras, Polyhedron 16, 4023 (1997); (b) T.S. Lobana, P.K. Bhatia and E.R.T. Tiekink, J. Chem. Soc. Dalton Trans. 749 (1989); (c) T.S. Lobana, P.K. Bhatia, D.C. Povey and G.W. Smith, J. Cryst. and Spect. Res. 21, 9 (1991); (d) E.R.T. Tiekink, T.S. Lobana and R. Singh, J. Cryst. and Spect. Res. 21, 205 (1991); (e) T.S. Lobana and P.K. Bhatia, J. Chem. Soc. Dalton Trans. 1407 (1992); (f) E. Horn, T.S. Lobana, R. Singh and E.R.T. Tiekink; Z. Krist. 205, 291 (1993); (g) T.S. Lobana, Renu Verma, R. Singh and A. Castineiras, Transition Met. Chem. 23, 25 (1998); (h) T.S. Lobana, Seema Paul and A. Castineiras, J. Chem. Soc. Dalton Trans 1819 (1999).
[4] T.S. Lobana and Seema Paul, Transition Met. Chem. 21, 300 (1996) and references cited therein.
[5] T.S. Lobana and R. Verma, Indian J. Chem. Sect A 38A, 592 (1999).
[6] T.S. Lobana, R. Verma and A. Castineiras, Polyhedron 17, 3753 (1999).
[7] B.V. Nonius, CAD 4-Express Software, Ver. 5.1/1.2. (Enraf Nonius, Delft, The Netherlands, 1995).
[8] A.L. Spek, HELENA. A Program for Data Reduction of CAD4 data (University of Utrecht, The Netherlands, 1997).
[9] A.L. Spek, PLATON. A Multipurpose Crystallographic Tool (Utrecht University, Utrecht, The Netherlands, 1997).
[10] G.M. Sheldrick, Acta Crystallgr. A46, 467 (1990).
[11] G.M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures (University of Goettingen, Germany, 1997).
[12] International Tables for X-ray Crystallography, Vol. C, (Kluwer Academic Publishers, Dordrecht, The Netherlands 1995).
[13] J.C. Shi, T.B. Wen, Y. Zheng, S.J. Zhong, D.X. Wu, Q.T. Liu, B.S. Kang, B.M. Wu and T.C.W. Mak, Polyhedron 16, 369 (1997).
[14] J.E. Huheey, E.A. Keiter and R.L. Keiter (Eds.), Inorganic Chemistry: Principles of Structure and Reactivity, 4th Edn. (Harper Collins College Publishers, New York, 1993).
[15] A. Caron, G.J. Palenik, E. Goldish and J. Donohue, Acta Crystallogr. 17, 102 (1964).
[16] T.S. Lobana, S. Paul, G. Hundal and S. Obrai, Transition Met. Chem. 24, 202 (1999) and references cited therein.

[^0]: *Corresponding author. Fax: 91-183-2-258820. E-mail: tarlokslobana@yahoo.co.in

